Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
PLoS One ; 18(5): e0285532, 2023.
Article in English | MEDLINE | ID: covidwho-2320111

ABSTRACT

Antibody-dependent cellular cytotoxicity (ADCC) is one of the most powerful mechanisms for Natural Killer (NK) cells to kill cancer cells or virus-infected cells. A novel chimeric protein (NA-Fc) was created, which when expressed in cells, positions an IgG Fc domain on the plasma membrane, mimicking the orientation of IgG bound to the cell surface. This NA-Fc chimera was tested with PM21-NK cells, produced through a previously developed particle-based method which yields superior NK cells for immunotherapeutic applications. Real time viability assays revealed higher PM21-NK killing of both ovarian and lung cancer cells expressing NA-Fc, which correlated with increased release of TNF-α and IFN-γ cytokines from NK cells and was dependent on CD16-Fc interactions. Lentivirus delivery of NA-Fc to target cells increased the rate of PM21-NK cell killing of A549 and H1299 lung, SKOV3 ovarian and A375 melanoma cancer cells. This NA-Fc-directed killing was extended to virus infected cells, where delivery of NA-Fc to lung cells that were persistently infected with Parainfluenza virus resulted in increased killing by PM21-NK cells. In contrast to its effect on PM21-NK cells, the NA-Fc molecule did not enhance complement mediated lysis of lung cancer cells. Our study lays the foundation for application of the novel NA-Fc chimera that could be delivered specifically to tumors during oncolytic virotherapy to mark target cells for ADCC by co-treatment with adoptive NK cells. This strategy would potentially eliminate the need to search for unique cancer specific antigens for development of new antibody therapeutics.


Subject(s)
Killer Cells, Natural , Lung Neoplasms , Humans , Antibody-Dependent Cell Cytotoxicity , Cytokines/metabolism , Immunoglobulin G/metabolism , Lung Neoplasms/therapy , Lung Neoplasms/metabolism , Receptors, IgG/metabolism
2.
Sci Rep ; 12(1): 18168, 2022 Oct 28.
Article in English | MEDLINE | ID: covidwho-2096749

ABSTRACT

SARS-CoV-2 infection and disease severity are influenced by viral entry (VE) gene expression patterns in the airway epithelium. The similarities and differences of VE gene expression (ACE2, TMPRSS2, and CTSL) across nasal and bronchial compartments have not been fully characterized using matched samples from large cohorts. Gene expression data from 793 nasal and 1673 bronchial brushes obtained from individuals participating in lung cancer screening or diagnostic workup revealed that smoking status (current versus former) was the only clinical factor significantly and reproducibly associated with VE gene expression. The expression of ACE2 and TMPRSS2 was higher in smokers in the bronchus but not in the nose. scRNA-seq of nasal brushings indicated that ACE2 co-expressed genes were highly expressed in club and C15orf48+ secretory cells while TMPRSS2 co-expressed genes were highly expressed in keratinizing epithelial cells. In contrast, these ACE2 and TMPRSS2 modules were highly expressed in goblet cells in scRNA-seq from bronchial brushings. Cell-type deconvolution of the gene expression data confirmed that smoking increased the abundance of several secretory cell populations in the bronchus, but only goblet cells in the nose. The association of ACE2 and TMPRSS2 with smoking in the bronchus is due to their high expression in goblet cells which increase in abundance in current smoker airways. In contrast, in the nose, these genes are not predominantly expressed in cell populations modulated by smoking. In individuals with elevated lung cancer risk, smoking-induced VE gene expression changes in the nose likely have minimal impact on SARS-CoV-2 infection, but in the bronchus, smoking may lead to higher viral loads and more severe disease.


Subject(s)
COVID-19 , Lung Neoplasms , Humans , SARS-CoV-2/genetics , Angiotensin-Converting Enzyme 2/genetics , COVID-19/genetics , Early Detection of Cancer , Peptidyl-Dipeptidase A/metabolism , Lung Neoplasms/metabolism , Bronchi/metabolism , Smoking/adverse effects , Smoking/genetics
3.
J Cell Physiol ; 237(11): 4021-4036, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2013564

ABSTRACT

Extracellular vehicles (EVs) are nanoscale lipid bilayer vesicles that carry biologically active biomolecule cargos like proteins, lipids, and nucleic acids (DNA, RNA) outside of the cell. Blood (serum/plasma), urine, and bronchoalveolar lavage fluid are all examples of biofluids from which they may be collected. EVs play a vital role in intracellular communication. The molecular signature of EVs largely depends on the parental cell's status. EVs are classified into two groups, (1) exosomes (originated by endogenous route) and (2) microvesicles (originated from the plasma membrane, also known as ectosomes). The quantity and types of EV cargo vary during normal conditions compared to pathological conditions (chronic inflammatory lung diseases or lung cancer). Consequently, EVs contain novel biomarkers that differ based on the cell type of origin and during lung diseases. Small RNAs (e.g., microRNAs) are transported by EVs, which is one of the most rapidly evolving research areas in the field of EVs biology. EV-mediated cargos transport small RNAs that can result in reprograming the target/recipient cells. Multiple chronic inflammatory lung illnesses, such as chronic obstructive pulmonary disease, asthma, pulmonary hypertension, pulmonary fibrosis, cystic fibrosis, acute lung injury, and lung cancer, have been demonstrated to be regulated by EV. In this review, we will consolidate the current knowledge and literature on the novel role of EVs and their small RNAs concerning chronic lung diseases (CLDs). Additionally, we will also provide better insight into the clinical and translational impact of mesenchymal stem cells-derived EVs as novel therapeutic agents in treating CLDs.


Subject(s)
Exosomes , Extracellular Vesicles , Lung Diseases , Lung Neoplasms , MicroRNAs , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Extracellular Vesicles/genetics , Extracellular Vesicles/metabolism , Exosomes/genetics , Exosomes/metabolism , Lung Diseases/genetics , Lung Neoplasms/metabolism
4.
Int J Mol Sci ; 23(6)2022 Mar 19.
Article in English | MEDLINE | ID: covidwho-1760653

ABSTRACT

Lung cancer (LC) is the leading cause of cancer-related death worldwide. Although the diagnosis and treatment of non-small cell lung cancer (NSCLC), which accounts for approximately 80% of LC cases, have greatly improved in the past decade, there is still an urgent need to find more sensitive and specific screening methods. Recently, new molecular biomarkers are emerging as potential non-invasive diagnostic agents to screen NSCLC, including multiple microRNAs (miRNAs) that show an unusual expression profile. Moreover, peripheral blood mononuclear cells' (PBMCs) miRNA profile could be linked with NSCLC and used for diagnosis. We developed a molecular beacon (MB)-based miRNA detection strategy for NSCLC. Following PBMCs isolation and screening of the expression profile of a panel of miRNA by RT-qPCR, we designed a MB targeting of up-regulated miR-21-5p. This MB 21-5p was characterized by FRET-melting, CD, NMR and native PAGE, allowing the optimization of an in-situ approach involving miR-21-5p detection in PBMCs via MB. Data show the developed MB approach potential for miR-21-5p detection in PBMCs from clinical samples towards NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , MicroRNAs , Biomarkers, Tumor/genetics , Carcinoma, Non-Small-Cell Lung/diagnosis , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Gene Expression Regulation, Neoplastic , Humans , Leukocytes, Mononuclear/metabolism , Lung Neoplasms/diagnosis , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , MicroRNAs/metabolism
5.
Int J Environ Res Public Health ; 19(6)2022 03 15.
Article in English | MEDLINE | ID: covidwho-1742460

ABSTRACT

BACKGROUND: Lung cancer patients have the worst outcomes when affected by coronavirus disease 2019 (COVID-19). The molecular mechanisms underlying the association between lung cancer and COVID-19 remain unknown. The objective of this investigation was to determine whether there is crosstalk in molecular perturbation between COVID-19 and lung cancer, and to identify a molecular signature, molecular networks and signaling pathways shared by the two diseases. METHODS: We analyzed publicly available gene expression data from 52 severely affected COVID-19 human lung samples, 594 lung tumor samples and 54 normal disease-free lung samples. We performed network and pathways analysis to identify molecular networks and signaling pathways shared by the two diseases. RESULTS: The investigation revealed a signature of genes associated with both diseases and signatures of genes uniquely associated with each disease, confirming crosstalk in molecular perturbation between COVID-19 and lung cancer. In addition, the analysis revealed molecular networks and signaling pathways associated with both diseases. CONCLUSIONS: The investigation revealed crosstalk in molecular perturbation between COVID-19 and lung cancer, and molecular networks and signaling pathways associated with the two diseases. Further research on a population impacted by both diseases is recommended to elucidate molecular drivers of the association between the two diseases.


Subject(s)
COVID-19 , Lung Neoplasms , Humans , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Signal Transduction
6.
Arch Pharm (Weinheim) ; 355(5): e2100467, 2022 May.
Article in English | MEDLINE | ID: covidwho-1680268

ABSTRACT

Although the androgen receptor (AR) is a validated target for the treatment of prostate cancer, resistance to antiandrogens necessitates the development of new therapeutic modalities. Exploiting the ubiquitin-proteasome system with proteolysis-targeting chimeras (PROTACs) has become a practical approach to degrade specific proteins and thus to extend the portfolio of small molecules used for the treatment of a broader spectrum of diseases. Herein, we present three subgroups of enzalutamide-based PROTACs in which only the exit vector was modified. By recruiting cereblon, we were able to demonstrate the potent degradation of AR in lung cancer cells. Furthermore, the initial evaluation enabled the design of an optimized PROTAC with a rigid linker that degraded AR with a DC50 value in the nanomolar range. These results provide novel AR-directed PROTACs and a clear rationale for further investigating AR involvement in lung cancer models.


Subject(s)
Lung Neoplasms , Prostatic Neoplasms , Receptors, Androgen , Humans , Male , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Proteolysis , Receptors, Androgen/metabolism , Structure-Activity Relationship , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/metabolism
7.
Int J Mol Sci ; 22(21)2021 Nov 08.
Article in English | MEDLINE | ID: covidwho-1512381

ABSTRACT

Tumor-associated cell-free DNAs (cfDNA) play an important role in the promotion of metastases. Previous studies proved the high antimetastatic potential of bovine pancreatic DNase I and identified short interspersed nuclear elements (SINEs) and long interspersed nuclear elements (LINEs)and fragments of oncogenes in cfDNA as the main molecular targets of enzyme in the bloodstream. Here, recombinant human DNase I (commercial name Pulmozyme®), which is used for the treatment of cystic fibrosis in humans, was repurposed for the inhibition of lung metastases in the B16 melanoma model in mice. We found that Pulmozyme® strongly reduced migration and induced apoptosis of B16 cells in vitro and effectively inhibited metastases in lungs and liver in vivo. Pulmozyme® was shown to be two times more effective when administered intranasally (i.n.) than bovine DNase I, but intramuscular (i.m.) administration forced it to exhibit as high an antimetastatic activity as bovine DNase I. Both DNases administered to mice either i.m. or i.n. enhanced the DNase activity of blood serum to the level of healthy animals, significantly decreased cfDNA concentrations, efficiently degraded SINE and LINE repeats and c-Myc fragments in the bloodstream and induced apoptosis and disintegration of neutrophil extracellular traps in metastatic foci; as a result, this manifested as the inhibition of metastases spread. Thus, Pulmozyme®, which is already an approved drug, can be recommended for use in the treatment of lung metastases.


Subject(s)
Cell-Free Nucleic Acids/blood , Deoxyribonuclease I/metabolism , Long Interspersed Nucleotide Elements/genetics , Lung Neoplasms/drug therapy , Melanoma, Experimental/drug therapy , Proto-Oncogene Proteins c-myc/antagonists & inhibitors , Short Interspersed Nucleotide Elements/genetics , Animals , Cell Line, Tumor , Deoxyribonuclease I/pharmacology , Disease Models, Animal , Drug Repositioning , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/secondary , Male , Melanoma, Experimental/genetics , Melanoma, Experimental/metabolism , Melanoma, Experimental/pathology , Mice , Proto-Oncogene Proteins c-myc/blood , Proto-Oncogene Proteins c-myc/genetics , Recombinant Proteins/pharmacology
8.
Cancer Genomics Proteomics ; 18(5): 661-673, 2021.
Article in English | MEDLINE | ID: covidwho-1395533

ABSTRACT

BACKGROUND/AIM: Coronavirus disease 2019 (COVID-19) poses a great challenge for the treatment of cancer patients. It presents as a severe respiratory infection in aged individuals, including some lung cancer patients. COVID-19 may be linked to the progression of aggressive lung cancer. In addition, the side effects of chemotherapy, such as chemotherapy resistance and the acceleration of cellular senescence, can worsen COVID-19. Given this situation, we investigated the role of paclitaxel (a chemotherapy drug) in the cell proliferation, apoptosis, and cellular senescence of gefitinib-resistant non-small-cell lung cancer (NSCLC) cells (PC9-MET) to clarify the underlying mechanisms. MATERIALS AND METHODS: PC9-MET cells were treated with paclitaxel for 72 h and then evaluated by a cell viability assay, DAPI staining, Giemsa staining, apoptosis assay, a reactive oxygen species (ROS) assay, SA-ß-Gal staining, a terminal deoxynucleotidyl transferase dUTP nick-end labeling assay and Western blotting. RESULTS: Paclitaxel significantly reduced the viability of PC9-MET cells and induced morphological signs of apoptosis. The apoptotic effects of paclitaxel were observed by increased levels of cleaved caspase-3 (Asp 175), cleaved caspase-9 (Asp 330) and cleaved PARP (Asp 214). In addition, paclitaxel increased ROS production, leading to DNA damage. Inhibition of ROS production by N-acetylcysteine attenuates paclitaxel-induced DNA damage. Importantly, paclitaxel eliminated cellular senescence, as observed by SA-ß-Gal staining. Cellular senescence elimination was associated with p53/p21 and p16/pRb signaling inactivation. CONCLUSION: Paclitaxel may be a promising anticancer drug and offer a new therapeutic strategy for managing gefitinib-resistant NSCLC during the COVID-19 pandemic.


Subject(s)
Antineoplastic Agents/pharmacology , Carcinoma, Non-Small-Cell Lung/drug therapy , Drug Resistance, Neoplasm/drug effects , Gefitinib/pharmacology , Lung Neoplasms/drug therapy , Paclitaxel/pharmacology , Apoptosis/drug effects , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Cellular Senescence/drug effects , Humans , Lung Neoplasms/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects
9.
Comb Chem High Throughput Screen ; 25(14): 2463-2472, 2022.
Article in English | MEDLINE | ID: covidwho-1308218

ABSTRACT

COVID-19 is considered as the most challenging in the current situation but lung cancer is also the leading cause of death in the global population. These two malignancies are among the leading human diseases and are highly complex in terms of diagnostic and therapeutic approaches as well as the most frequent and highly complex and heterogeneous in nature. Based on the latest update, it is known that the patients suffering from lung cancer, are considered to be significantly at higher risk of COVID-19 infection in terms of survival and there are a number of evidences which support the hypothesis that these diseases may share the same functions and functional components. Multi-level unwanted alterations such as (epi-)genetic alterations, changes at the transcriptional level, and altered signaling pathways (receptor, cytoplasmic, and nuclear level) are the major sources which promote a number of complex diseases and such heterogeneous level of complexities are considered as the major barrier in the development of therapeutics. With so many challenges, it is critical to understand the relationships and the common shared aberrations between them which is difficult to unravel and understand. A simple approach has been applied for this study where differential gene expression analysis, pathway enrichment, and network level understanding are carried out. Since, gene expression changes and genomic alterations are related to the COVID-19 and lung cancer but their pattern varies significantly. Based on the recent studies, it appears that the patients suffering from lung cancer and and simultaneously infected with COVID-19, then survival chance is lessened. So, we have designed our goal to understand the genes commonly overexpressed and commonly enriched pathways in case of COVID-19 and lung cancer. For this purpose, we have presented the summarized review of the previous works where the pathogenesis of lung cancer and COVID-19 infection have been focused and we have also presented the new finding of our analysis. So, this work not only presents the review work but also the research work. This review and research study leads to the conclusion that growth promoting pathways (EGFR, Ras, and PI3K), growth inhibitory pathways (p53 and STK11), apoptotic pathways (Bcl- 2/Bax/Fas), and DDR pathways and genes are commonly and dominantly altered in both the cases COVID-19 and lung cancer.


Subject(s)
COVID-19 , Lung Neoplasms , Humans , COVID-19/genetics , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Signal Transduction/genetics , Mutation
10.
Aging (Albany NY) ; 13(12): 15770-15784, 2021 06 24.
Article in English | MEDLINE | ID: covidwho-1282781

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19), and is highly contagious and pathogenic. TMPRSS2 and Neuropilin-1, the key components that facilitate SARS-CoV-2 infection, are potential targets for treatment of COVID-19. Here we performed a comprehensive analysis on NRP1 and TMPRSS2 in lung to provide information for treating comorbidity of COVID-19 with lung cancer. NRP1 is widely expressed across all the human tissues while TMPRSS2 is expressed in a restricted pattern. High level of NRP1 associates with worse prognosis in multiple cancers, while high level of TMPRSS2 is associated with better survival of Lung Adenocarcinoma (LUAD). Moreover, NRP1 positively correlates with the oncogenic Cancer Associated Fibroblast (CAF), macrophage and endothelial cells infiltration, negatively correlates with infiltration of CD8+ T cell, the tumor killer cell in Lung Squamous cell carcinoma (LUSC). TMPRSS2 shows negative correlation with the oncogenic events in LUAD. RNA-seq data show that NRP1 level is slightly decreased in peripheral blood of ICU admitted COVID-19 patients, unaltered in lung, while TMPRSS2 level is significantly decreased in lung of COVID-19 patients. Our analysis suggests NRP1 as a potential therapeutic target, while sets an alert on targeting TMPRSS2 for treating comorbidity of COVID-19 and lung cancers.


Subject(s)
Adenocarcinoma of Lung/metabolism , Gene Expression Regulation, Neoplastic , Lung Neoplasms/metabolism , Neuropilin-1/physiology , Serine Endopeptidases/physiology , Adenocarcinoma of Lung/mortality , CD8-Positive T-Lymphocytes/metabolism , COVID-19/genetics , COVID-19/metabolism , Cancer-Associated Fibroblasts/metabolism , Computer Simulation , Endothelial Cells/metabolism , Humans , Lung Neoplasms/mortality , Macrophages/metabolism , Neuropilin-1/genetics , RNA-Seq , SARS-CoV-2 , Serine Endopeptidases/genetics
11.
Sci Adv ; 7(1)2021 01.
Article in English | MEDLINE | ID: covidwho-1066781

ABSTRACT

Despite past extensive studies, the mechanisms underlying pulmonary fibrosis (PF) still remain poorly understood. Here, we demonstrated that lungs originating from different types of patients with PF, including coronavirus disease 2019, systemic sclerosis-associated interstitial lung disease, and idiopathic PF, and from mice following bleomycin (BLM)-induced PF are characterized by the altered methyl-CpG-binding domain 2 (MBD2) expression in macrophages. Depletion of Mbd2 in macrophages protected mice against BLM-induced PF. Mbd2 deficiency significantly attenuated transforming growth factor-ß1 (TGF-ß1) production and reduced M2 macrophage accumulation in the lung following BLM induction. Mechanistically, Mbd2 selectively bound to the Ship promoter in macrophages, by which it repressed Ship expression and enhanced PI3K/Akt signaling to promote the macrophage M2 program. Therefore, intratracheal administration of liposomes loaded with Mbd2 siRNA protected mice from BLM-induced lung injuries and fibrosis. Together, our data support the possibility that MBD2 could be a viable target against PF in clinical settings.


Subject(s)
COVID-19/metabolism , DNA-Binding Proteins/metabolism , Macrophages/metabolism , Pulmonary Fibrosis/metabolism , Animals , Bleomycin/pharmacology , Carcinoma, Non-Small-Cell Lung/metabolism , Fibrosis , Gene Expression Profiling , Gene Expression Regulation , Humans , Liposomes/chemistry , Lung Diseases, Interstitial/metabolism , Lung Neoplasms/metabolism , Macrophages/virology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Pulmonary Fibrosis/virology , RNA, Small Interfering/metabolism , Scleroderma, Systemic/metabolism , Signal Transduction , Transforming Growth Factor beta1/metabolism
12.
Mol Biol Rep ; 48(2): 1925-1934, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-1043084

ABSTRACT

Coronavirus Disease 2019 (COVID-19) is an acute respiratory syndrome, reported at the end of 2019 in China originally and immediately spread affecting over ten million world population to date. This pandemic is more lethal for the older population and those who previously suffered from other ailments such as cardiovascular diseases, respiratory disorders, and other immune system affecting abnormalities including cancers. Lung cancer is an important comorbidity of COVID-19. In this review, we emphasized the impact of lung tumor microenvironment (TME) on the possibility of enhanced severity of infection caused by the SARS-Co-V2. The compromised lung TME is further susceptible to the attack of viruses. The lung cells are also abundant in the virus entry receptors. Several SARS-Co-V2 proteins can modulate the lung TME by disrupting the fragile immune mechanisms contributing to cytokine storming and cellular metabolic variations. We also discussed the impact of medication used for lung cancer in the scenario of this infection. Since other respiratory infections can be a risk factor for lung cancer, COVID-19 recovered patients should be monitored for tumor development, especially if there is genetic susceptibility or it involves exposure to other risk factors.


Subject(s)
COVID-19/prevention & control , Lung Neoplasms/pathology , SARS-CoV-2/isolation & purification , Tumor Microenvironment , COVID-19/epidemiology , COVID-19/virology , Cytokines/immunology , Cytokines/metabolism , Humans , Immune System/immunology , Immune System/metabolism , Immune System/virology , Lung Neoplasms/metabolism , Lung Neoplasms/virology , Pandemics , Receptors, Virus/metabolism , SARS-CoV-2/physiology , Severity of Illness Index
13.
Aging (Albany NY) ; 13(2): 1620-1632, 2021 01 10.
Article in English | MEDLINE | ID: covidwho-1022288

ABSTRACT

Both lung adenocarcinoma and coronavirus disease 2019 would cause pulmonary inflammation. Angiotensin-converting enzyme 2, the functional receptor of SARS-CoV-2, also plays a key role in lung adenocarcinoma. To study the risk of SARS-CoV-2 infection in lung adenocarcinoma patients, mRNA and microRNA profiles were obtained from The Cancer Genome Atlas and Gene Expression Omnibus followed by bioinformatics analysis. A network which regards angiotensin-converting enzyme 2 as the center was structured. In addition, via immunological analysis to explore the essential mechanism of SARS-CoV-2 susceptibility in lung adenocarcinoma. Compared with normal tissue, angiotensin-converting enzyme 2 was increased in lung adenocarcinoma patients. Furthermore, a total of 7 correlated differently expressed mRNAs (ACE2, CXCL9, MMP12, IL6, AZU1, FCN3, HYAL1 and IRAK3) and 5 correlated differently expressed microRNAs (miR-125b-5p, miR-9-5p, miR-130b-5p, miR-381-3p and miR-421) were screened. Interestingly, the most frequent toll-like receptor signaling pathway was enriched by mRNA (interlukin 6) and miRNA (miR-125b-5p) sets simultaneously. In conclusion, it was assumed that miR-125b-5p-ACE2-IL6 axis could alter the risk of SARS-CoV-2 infection in lung adenocarcinoma patients.


Subject(s)
Adenocarcinoma of Lung/virology , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/complications , Lung Neoplasms/virology , Transcriptome , Adenocarcinoma of Lung/metabolism , Computational Biology , Humans , Interleukin-6/metabolism , Lung Neoplasms/metabolism , MicroRNAs/metabolism , Risk Factors , SARS-CoV-2
14.
Chem Biol Interact ; 335: 109370, 2021 Feb 01.
Article in English | MEDLINE | ID: covidwho-1014379

ABSTRACT

The aberrant expression level of SARS-CoV-2 cell receptor gene ACE2 was reported in lung adenocarcinoma (LUAD) comorbidity of COVID-19. However, the association of ACE2 expression levels with immunosuppression and metabolic reprogramming in LUAD remains lacking. We investigated the expression level of ACE2, an association of ACE2 expression level with various types of immune signatures, immune ratios, and pathways. We employed a weighted gene co-expression network analysis (WGCNA) R package to identify the gene modules and investigated prognostic roles of hub genes in LUAD. Overexpression of ACE2 level was found in LUAD and ACE2 expression was negatively associated with various types of immune signatures including CD8+ T cells, CD4+ regulatory T cells, NK cells, and T cell activation. Besides, ACE2 upregulation was not only associated with CD8+ T cell/CD4+ regulatory T cell ratios but also linked with downregulation of immune-markers including CD8A, KLRC1, GZMA, GZMB, NKG7, CCL4, and IFNG. Moreover, the ACE2 expression level was found to be associated with the enrichment level of various metabolic pathways and it was also found that the metabolic pathways are directly positively correlated with the increased expression levels of ACE2, indicating that the overexpression of ACE2 is associated with metabolic reprogramming in LUAD. Furthermore, WGCNA based analysis revealed the gene modules in the high-ACE2-expression-level group of LUAD and identified GCLC and SLC7A11 hub genes which are not only highly expressed in lung adenocarcinoma but also correlated with the poor survival prognosis. Our analysis of ACE2 in LUAD tissues suggests that ACE2 is not only a receptor but is also associated with immunosuppression and metabolic reprogramming. This study underlines the clue for understanding the clinical significance of ACE2 in COVID-19 patients with LUAD comorbidity.


Subject(s)
Adenocarcinoma of Lung/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Immunity, Cellular/genetics , Immunity, Innate/genetics , Lung Neoplasms/metabolism , Adenocarcinoma of Lung/epidemiology , Amino Acid Transport System y+/genetics , Angiotensin-Converting Enzyme 2/genetics , COVID-19/epidemiology , Comorbidity , Computational Biology , Databases, Genetic/statistics & numerical data , Female , Gene Expression Regulation, Neoplastic , Glutamate-Cysteine Ligase/genetics , Humans , Lung Neoplasms/epidemiology , Lymphocyte Activation/genetics , Male , Non-Smokers , Protein Interaction Maps/genetics , SARS-CoV-2 , Smokers , T-Lymphocytes/metabolism , Transcriptome , Up-Regulation
15.
Eur Rev Med Pharmacol Sci ; 24(6): 3426-3432, 2020 03.
Article in English | MEDLINE | ID: covidwho-51429

ABSTRACT

The outbreak of Sars-CoV-2 (COVID-19) poses serious challenges to people's health worldwide. The management of the disease is mostly supportive, and respiratory failure from acute respiratory distress syndrome is the leading cause of death in a significant proportion of affected patients. Preliminary data point out that dramatic increase in IL-6 and subsequent cytokine release syndrome may account for the development of fatal interstitial pneumonia. Inhibition of IL-6 by blocking its specific receptor with monoclonal antibodies has been advocated as a promising attempt. Here we assess the potential utility of myo-Inositol, a polyol already in use for treating the newborn Respiratory Distress Syndrome, in downregulating the inflammatory response upon Sars-CoV-2 infection. Myo-Inositol proved to reduce IL-6 levels in a number of conditions and to mitigate the inflammatory cascade, while being devoid of any significant side effects. It is tempting to speculate that inositol could be beneficial in managing the most dreadful effects of Sars-CoV-2 infection.


Subject(s)
Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Cytokine Release Syndrome/etiology , Inositol/therapeutic use , Pneumonia, Viral/drug therapy , COVID-19 , Coronavirus Infections/complications , Coronavirus Infections/physiopathology , Down-Regulation , Humans , Interleukin-6/metabolism , Lung Neoplasms/metabolism , Pandemics , Pneumonia, Viral/complications , Pneumonia, Viral/physiopathology , SARS-CoV-2 , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL